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1.  Introduction

The number of spatial dimensions in a system affects the 
appearance of universality in phase transitions, with lower 
dimensions corresponding to a stronger influence of thermal 
fluctuations. Thus, perfect long-range order is prohibited in 
the lower critical dimension, which is known to be 2 for a 
spin system with continuous symmetry, such as the XY and 
Heisenberg spin models. Felix Bloch [1] first noted that global 
magnetisation cannot exist in one or two dimensions. This 
lower critical dimension was originally considered to be the 
marginal spatial dimension below which the phase transition 
vanishes. It was later proven to be a special universal phase 

transition, which became known as the ‘Kosterlitz–Thouless 
transition’ [2]. In the low-temperature phase, the translational 
order is quasi-long-ranged, because of the long-wavelength 
fluctuation. This is in contrast to systems with more than four 
dimensions (i.e. the upper critical dimensions), for which fluc-
tuation is associated with the mean-field universality class.

A two-dimensional (2D) crystal also possesses continuous 
symmetry at the thermodynamic limit of infinite system sizes 
N. In 1934, Peierls considered a solid with harmonic inter-
actions and fixed connectivities [3]. We denote the displace-
ment of a particle from the lattice position as ui. The relative 
thermal displacement between a pair of distant atoms |ui − uj| 
increases as a function of the interatomic distance rij as
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〈|ui − uj|2〉 ∝ log rij,� (1)

meaning that the thermal strain compounds logarithmically 
with N, finally diverging at the macroscopic limit. This argu-
ment was previously considered as evidence that 2D solids 
cannot exist in terms of long-range translational order.

At present, however, it is widely accepted that perfect 
long-ranged orientational order does exist in 2D crystals. 
The melting of those crystals is described by the so-called 
Kosterlitz–Thouless–Halperin–Nelson–Young (KTHNY) 
theory [4, 5], based on the dissociation of topological defects 
of Kosterlitz–Thouless type. In the scenario described by the 
KTHNY theory, emergence of finite elastic moduli is an essen-
tial feature that renders a 2D crystal distinct from other states 
[5–7]. Note, also, that this concept can be fruitfully transferred 
to 2D amorphous solids. Recent developments with regard to 
computational power and simulation techniques have allowed 
more precise characterisation of the melting transition of 2D 
crystals. In particular, the problem of whether the transition 
is continuous or weakly first order has come into focus once 
more and stimulated recent works, both simulation-based  
[8–11] and experimental [12–15].

The question as to whether the glass transition is dimen-
sionality dependent is intriguing. Recent work has focused on 
the glass transition at the limit of infinite spatial dimensions 
[16–18]; the expectation is to observe the mean-field behav-
iour of the glassy dynamics above the upper critical dimen-
sion (d  =  8) of the random first-order transition theory. It was 
expected that a 2D glass would behave similar to its three-
dimensional (3D) counterpart [19, 20]. Recently, however, 
significant differences have been observed between 2D and 
3D glasses in computer simulation [21]. The present authors 
[22, 23] and Vivek et al [24] have noted that those differences 
can be explained by considering fluctuations that obey the 
Mermin–Wagner theorem at long wavelengths. Such long-
wavelength fluctuation is found to strongly affect the standard 
time correlation functions, such as the MSDs and interme-
diate scattering functions. It has also been shown that the 
long-wavelength fluctuations are independent of the structural 
changes by using either broken bond functions [22] or cage-
relative quantities [22–24].

In this paper, we investigate the glassy fluctuation and relax-
ation by analysing molecular dynamics simulation results of 
lightly supercooled liquid in two dimensions, with particular 
focus on the cage-relative variable, which is key to separate 
the glassy structural relaxation from the long-wavelength fluc-
tuation. The purpose of this study is to make a clear separation 
between the structural rearrangements and the acoustic fluctua-
tions over the entire time range in the glassy dynamics, from the 
time scales of the cage vibration to α relaxations, focusing on the 
cage-relative displacements and their variants. Special attention 
is placed on the crossover from short- to long-term diffusion in 
the plateau region of the MSD. Note that the typical timescales 
of the Mermin–Wagner fluctuations and structural relaxations 
exhibit different dependence on N and temperature T.

The remainder of this paper is organised as follows. In sec-
tion 2, relevant background information regarding fluctuations 
in 2D crystals and glass is provided. The methods employed 

in this study are described in section 3, and the results are pre-
sented and discussed in section 4. A brief summary is given 
in section 5.

2.  Background: fluctuations in 2D crystals and 
glass

2.1.  Mermin–Wagner fluctuation in 2D elastic body

We first address a 2D glass at a fixed T, regarding it as an iso-
tropic elastic solid and beginning with an assembly of atoms 
that are displaced by thermal fluctuations from their initial 
position R. The instantaneous position of each particle at time 
t is then given by r(t) = R + u(R, t). The displacement field 
u(R, t) is described as a superposition of plane waves with 
different wave-numbers k, as follows:

u(R, t) =
(

L
2π

)D ∫
uk(t) exp(ik · R) dDk.� (2)

Here, D indicates the spatial dimension, which is equal to 2 in 
our discussion, and L denotes total length of the system.

In an elastic medium at finite T, extended acoustic modes 
exist in the continuum limit, and their long-wavelength contrib
utions can be treated as a gas of independent phonons, equivalent 
to the Debye model for harmonic solids. The equipartition of 
energy among the independent modes gives mω2

k |uk|2 = kBT , 
where m is the average particle mass, ωk is the frequency of 
each mode with wavenumber k, and kB is the Boltzmann con-
stant. Based on this assumption, the mean-squared thermal dis-

placement 〈|u|2〉 =
( L

2π

)
D
∫
〈|uk|2〉 dDk can be expressed as

〈|u|2〉 = DkBT
m

∫
gD(ω)

ω2 dω,� (3)

where gD(ω) denotes the vibrational density of state (vDOS) 
of the long-wavelength phonons obeying the linear dispersion 
relation ωk = ck  (c is the sound velocity). For D  =  2, the int
egral in equation (3) exhibits an infrared divergencef, because 
the vDOS is given by gD(ω)/ω = (2πc2)−1 under the Debye 
approximation. This asymptotic Debye behaviour should 
appear in the very-low-frequency region beyond the well-
known boson peak [25–30]. For the 2D systems, the existence 
of the boson peak may be difficult to detect in experiment 
[31–33]; however, simulation results indicate that the boson 
peak has a subtle but definite existence in a 2D glass [34, 35].

Recently, the vDOS was confirmed to approach gD(ω) 
asymptotically for 2D disk glassy systems with soft-core 12th 
[22] and harmonic repulsions [35]. Further, plane-wave-like 
Debye behaviour was demonstrated experimentally through a 
trajectory analysis of a 2D colloidal glass former [33].

The divergence is logarithmic, but has a sizeable effect. 
The amplitude Ap of the thermal vibration can be readily esti-
mated by introducing the minimum frequency ωmin = 2π/tc 
in the integral of equation  (3), tc  =  L/c is the time before a 
sound wave traverses the entire system

A2
p ∼ kBT

π

(
1
µ
+

1
K + µ

)
log

(
L
σ

)
.� (4)
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Further, σ denotes the mean particle radius providing the min-
imum length scale in the system and μ and K are the shear 
and bulk moduli, respectively. Use is made of a trivial rela-
tion A2

p = 2〈|u|2〉, where it is stated that the amplitude A2
p is 

twice the MSD for all modes exhibiting Gaussian thermal 
fluctuations. As there are equal numbers of longitudinal 
and transverse sound modes in 2D, each with velocities cL 
or cT, respectively, we have the expression above (equation 
(4)) [22]. Then, cL =

√
µ/ρ and cT =

√
(K + µ)/ρ, with the 

mass density ρ = mn and n being the number density.
For a prevalent class of glasses, its relaxation is attributed 

to an accumulation of local structural rearrangements repre-
sented by intermittent jumping motions of particles to escape 
the cage created by their neighbours [36–39]. This local pro-
cess cannot couple with longer-wavelength modes and has 
marginal influence on the size-dependent fluctuation. In fact, 
it is consistent with the observation that the size dependence is 
limited only to the scale of heterogeneous motion for several 
kinds of 3D glassy liquids [40–42]. On further observation, 
the long-wavelength modes are found to induce coopera-
tive motion in 3D fragile glass formers [43, 44], but the link 
between the cooperativity and slow relaxation is weak and 
remains to be clarified. However, for 2D glasses and glassy 
liquids, the magnitude of the long-ranged fluctuation increases 
with increased N and the dynamics is directly affected up to 
a long time scale comparable to tc [22]. It should be noted 
that the system size dependence in equation (3) is nothing but 
a different expression of Mermin–Wagner theorem, the root 
of the KTHNY transition in 2D melting. For this reason, this 
fluctuation can be named as ‘Mermin–Wagner fluctuation’ 
[23], expected ubiquitously in a 2D glass.

2.2.  Realisation in colloidal experiments

Recently, molecular dynamics simulations have been con-
ducted for a 2D supercooled liquid with large system sizes 
[21, 22, 45]. For a molecular dynamics simulation of parti-
cles with short-ranged interactions, simulations can be par-
allelised with spatial-decomposition techniques—as a result, 
computation load is simply proportional to the system size 
N. Therefore, simulation performance scales linearly with 
the number of nodes, which is the reason why it has recently 
become possible to perform molecular dynamics simulations 
of large-scale fluctuations in an assembly of millions of par-
ticles, over a decade of orders of time steps.

The first experimental observations of 2D glassy long-
wavelength fluctuations have also been realised [23, 24], moti-
vated by the observation of the dimensionality dependence in 
[21]. Such fluctuations are ubiquitously expected for a wide 
range of solids (crystalline or amorphous) confined in two 
dimensions, because the logarithmic increase in amplitude is 
an immediate consequence of the linear elasticity. Graphene 
might be regarded as an ideal candidate with 2D structure. 
However, the Ap term in equation (4) can be estimated to be 
10−6 Å for a sheet with a size of meter order, if typical values 
for elasticity are assumed (σ ∼ 1 Å, µ ∼ 440 GPa) [46, 47]. 

In fact, other mechanisms such as out-of-plane fluctuations 
may govern the rippling motions in graphene.

Soft matter systems, on the other hand, provide a unique 
experimental environment for long-wavelength fluctuation. 
Indeed, colloidal particles confined in a planar geometry have 
been considered by several groups [15, 48–55]. For experi-
ments on 2D colloidal glasses, Ap can exceed 0.2σ , which 
is of sub-micrometer order for 2D binary colloidal systems. 
The softness of colloidal ensembles is due to the fact that the 
interaction energies between particles are of the same order 
of magnitude as the atomic system. As the particle distances 
are 104–106 times larger, the energy densities and, therefore, 
elastic constants, are 10−8–10−12 and 10−12–10−18 times 
smaller in 2D and 3D, respectively, compared to those of 
atomic systems. Because of this softness, long-wavelength 
excitations are easily activated by thermal energy in colloidal 
ensembles [23, 24, 33]. The easily accessible length scales 
at single-particle level and the easily accessible time scales 
of individual motion are at the expense of the accessibility 
of the long-term behaviour. While colloidal experiments can 
typically span five decades, experiments on molecular glasses 
usually address 10 to 20 decades, at the expense of single-
particle information.

2.3.  Separating structural relaxation: cage dynamics

Recent simulations [22] and experiments [23, 24] have clari-
fied that long-wavelength Mermin–Wagner fluctuations exist 
in 2D glassy systems, even if they lack crystalline structure. 
Furthermore, the infrasound divergence of such an enhanced 
fluctuation is shown to be independent of the structural relax-
ation. Standard time correlation functions based on the den-
sity field, including MSDs, fail to characterise such structural 
relaxation for large 2D systems, because the local density is 
strongly smeared by the transient vibrations. The effect of 
Mermin–Wagner fluctuations significantly larger than the 
local scale of the discrete density is simply an affine trans-
lation. Local rearrangements such as those due to particles 
escaping the cages created by their nearest neighbours, 
and the inherent glassy relaxation, are decoupled from the 
Mermin–Wagner fluctuations.

In these studies [22–24], cage-relative variables, which are 
explained in detail below, are considered. They are defined 
on the basis of a displacement of a particle relative to its 
neighbours (defined at an initial time), relating its motion 
to the local coordinate frame. Through this approach, the N 
dependence in the MSD disappeared and decoupling of the 
orientational and translational relaxations reported in [21] 
disappear, indicating that the local rearranging motion is suc-
cessfully depicted using cage-relative variables. Note that 
correlations calculated from global variables depend on two 
contributions: the local rearrangements of the glassy relaxa-
tions and the long-wavelength fluctuations. Unlike standard 
quantities, cage-relative quantities are not affected by long 
wavelength density fluctuations. Therefore, the comparison 
between standard and cage-relative correlation functions 
offers the possibility of quantitative characterisation of the 
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amplitudes of the Mermin–Wagner fluctuations, as actually 
achieved in a recent simulation [22].

Evaluating the amplitudes in this manner yields compatible 
results with Mermin–Wagner fluctuations evaluated ‘a priori’ 
using elastic constants at zero temperature [22]. Deviations 
appear for increased N, when the time-scale of the long-wave-
length vibrations becomes comparable to that of the structural 
relaxation. Apart from cage-relative displacements, the bond-
breakage function extracts rearrangements or complementary 
information on an atomistic level, and has also been success-
fully employed in simulation by two of the present authors 
[22]. This function characterises the change in the number 
of neighbour particles with respect to time, and has been 
employed to evaluate dynamic length scales [45, 56–58].

3.  Methods

3.1.  Simulation details

In this paper, the simulation data of the 2D binary 50:50 soft-
core potential system examined in [22] are analysed. The pair-
wise interaction is given as a function of distance r by

vαβ(r) = ε
(σαβ

r

)12
,� (5)

for r � rc = 2.21σ1, i.e. within the cutoff distance rc. The 
cubic smoothing function vαβ(r) = B(a − r)3 + C  is applied 
for distances r  >  rc, with a, B, and C satisfying continuity 
conditions at r  =  rc up to the second derivative of vαβ(r). The 
indices {α,β} ∈ {1, 2} represent the particle species. The size 
and mass ratios are set to σ2/σ1 = 1.4 and m2/m1 = (σ2/σ1)

2 , 
with σαβ = 1

2 (σα + σβ), and the interaction energy ε is the 
same for all pairs.

In the remainder of this paper, the results are presented in 
reduced units of σ1, ε/kB, and t0 =

√
m1σ1/ε for the length, 

T, and time, respectively. The simulations begin from the liquid 
state at T  =  2.5; then, we rapidly cool to the target T values and 
allow the system to relax under the Langevin thermostat over a 
sufficiently long lapse of time (5 × 105t0 for T = 0.64). All the 
dynamic quantities and correlations in the following sections are 
calculated from further simulations, which are all performed 
based on the Newtonian dynamics and without heat baths. The 
temperature is set to T  =  0.64 for almost all simulations; how-
ever, cases involving other T are presented in section 4.2.

3.2.  Cage-relative displacements and their time-correlation 
function

After rapid cooling of the liquid, the viscosity increases sig-
nificantly and the structure becomes frozen, transforming into 
a glass. In glassy systems, the MSD

M(t) =

〈
1
N

N∑
i=1

|∆ri(t)|2
〉

, ∆ri(t) = ri(t)− ri(0),� (6)

exhibits two-step relaxation behaviour due to the intermittent 
jump motion, with N being the total particle number. Before 
and after the plateau regions, the MSD exhibits an increase 

as a function of time t. The short-term regions are typically 
proportional to t2 if the dynamics of each particle obeys the 
Newtonian law, and in the long term become proportional to 
t, indicating slow diffusion. For intermediate time scales, a 
plateau with height M(tp) appears, with tp being a time corre
sponding to oscillatory motion inside the cage [59]. Mp(tp) is 
approximately equal to the squared amplitude of the thermal 
oscillation [60] and is an increasing function for increasing 
T. This height is typically a few percent of the interparticle 
distance for strongly supercooled fluids up to a value of the 
order of a tenth of the interparticle distance in the vicinity of 
melting, at least for small N. Those observations are compat-
ible with Lindemann-like arguments for small 2D crystals. It 
is worth mentioning that the short-term dependence in col-
loidal systems is linear to t; because of the viscous solvent, the 
particles obey Brownian motion with overdamped dynamics 
and diffusive behaviour [49].

To disentangle the effects of the jump motions and 
long-wavelength fluctuations, we employ the cage-relative 
displacement

∆rCR
i (t) = ∆ri(t)−

1
Nn.n.

i

∑
j∈n.n.

∆rj(t)� (7)

and cage-relative MSD

MCR(t) =

〈
1
N

N∑
i=1

|∆rCR
i (t)|2

〉
� (8)

defined as its mean square, where the summation indicates 
the neighbours of particle i and Nn.n.

i  represents the number 
of neighbours. As obvious from the definition, the motion 
of the particle relative to its neighbours is quantified. Note 
that the concept of cage-relative displacement was origi-
nally introduced for analysis of the melting of 2D crystals, 
so that the effect of the Mermin–Wagner fluctuations could 
be eliminated efficiently [12, 61]. Recently, this concept has 
been applied to the analysis of 2D glassy systems [22–24, 
33, 62, 63].

4.  Results

4.1.  Long-wavelength Mermin–Wagner fluctuation after 
removal of cage-relative contributions

The MSD is a quantity that is directly affected by 
long-wavelength fluctuation. Because the equilibrium posi-
tion (note that this is no longer a lattice position for glassy 
liquids and amorphous solids) of particle i does not change 
long before the α relaxation, the MSD is given by [45]

M(t) =
1
N

∑
i

〈|ui(t0)− ui(t0 + t)|2〉,� (9)

at the plateau time tp, where ui(t) represents the displacement 
of particle i from its equilibrium position. Under the assump-
tion that the cross correlation N−1 ∑

i〈ui(t0) · ui(t0 + t)〉 
decays for a fast acoustic damping, the plateau becomes

M(tp) = 2〈|u|2〉.� (10)
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The authors have recently found that the MSD exhibits 
N dependence in its plateau region for 2D glassy systems 
originating from the Mermin–Wagner fluctuation [22, 23]. 
This behaviour is attributed to the N dependence of the mean 
squared fluctuation amplitude A2

p = 2〈|u|2〉 of equation  (4), 
on the basis that only the long-wavelength Mermin–Wagner 
contributions are acting. However, for a quantitative compar-
ison between the plateau height and fluctuation amplitude, it 
is necessary to further eliminate the in-cage motion.

The cage-relative MSD is employed to eliminate the long-
wavelength fluctuation, and is found to terminate the N depend
ence of the MSD originating from this fluctuation [22, 23]. 
The cage-relative MSD reflects particle motion relative to its 
neighbours. In the short-term, far before α relaxation without 
changes in the neighbours, this quantity involves contributions 
from in-cage vibration; thus, it is possible to isolate the long-
wavelength contribution. On this basis, in a recent paper [22], 
the difference between the MSD and the cage-relative MSD

∆CR(t) = M(t)− MCR(t),� (11)

was considered at t  =  tp, to evaluate the A2
p of the 

long-wavelength fluctuation. This quantity can be loosely 
interpreted as indicating the cage-irrelevant part of the MSD.

For sufficiently low T, the plateau is well-defined over a 
wide time span between the β and α relaxations, allowing 
precise evaluation of A2

p. Hence, we can correctly calculate 
the long-wavelength vibration. However, if the relaxation time 
is too short for a crossover with the vibration time scale to 
occur, ∆CR(t) is affected by local rearrangement of the neigh-
bour particles. This means that the quantity can no longer 
be exploited for quantitative evaluation of the vibrations. 
Therefore, an applicability limit clearly applies to MCR(t) if 
α relaxation becomes too short, rendering it difficult to com-
pletely separate the acoustic fluctuation and diffusion. This 
problem becomes more critical for larger N, because the time 
period of the acoustic fluctuation is proportional to tc  =  L/c 
in a 2D system, meaning that the time scale of the plateau 
increases linearly with the system length.

In this section, we evaluate the N dependence of the A2
p of 

the long-wavelength fluctuation in equation (4). In the super-
cooled system considered here, the α relaxation time is suffi-
ciently short that the plateau height of the MSD (and ∆CR(t)) 
is affected by the slow diffusion. In figure 1, ∆CR(t) is plotted 
for different N. A plateau is apparent in a time region similar 
to that of the original MSD. However, after tp of the original 
MSD, growth with time also appears. This growth is weaker 
than the linear diffusion in the original MSD, exhibiting the 
subdiffusive asymptote ∆CR(t) ∼ Ct0.67 at the long-term limit, 
where C is estimated for each N through fitting. The reason for 
the increase in ∆CR(t) is that the average displacement of the 
neighbours in equation (7) no longer represents the motion of 
the cage, because these neighbours are also involved in the 
local particle rearrangement. This is due to the average dis-
placement given in equation (7), which is associated with the 
contributions of the particles with jump motions to the con-
figuration changes.

For the largest system size (N = 256 000), where tp is more 
retarded than for smaller systems, the height of ∆CR(tp) is still 
affected by the long-term behaviour. Before comparing the 
plateau heights of this ∆CR(t) and the MSD, we attempt to 
eliminate the effect of long-term dynamics, by subtracting the 
value of the subdiffusive asymptote:

ΓCR(t) = ∆CR(t)− Ct0.67.� (12)

As the contribution of the local particle rearrangement is 
removed to leave only the effect of the long-wavelength 
acoustic fluctuations, the quantity ΓCR(t) represents the MSD 
of the cage-irrelevant fluctuation. This quantity is plotted in 
the inset of figure 1. Compared with the previous quantities 
M(t) and ∆CR(t), the plateau regions extend to longer times 
and their heights can be accurately estimated.

Figure 2 shows the heights of the plateaus of the 
cage-irrelevant MSD ∆CR(tp) and its fluctuation component 
ΓCR(tp) after subtraction of the subdiffusive asymptote, 
together with the original MSD M(tp) (the same data as in 
[22]), with all the plateaus assumed to occur at the same time 
t  =  tp. The data for L = 561.8 (N = 256 000) are added for 
∆CR(tp), while the MSD plateau M(tp) can be evaluated to 
L  =  280.9 only (tp is taken as being the same for the three 
quantities). We note that the long-wavelength contribution to 
A2

p in equation  (4) is evaluated under Debye approximation 
with the sound velocities at temperatures very close to zero. 
The sound velocities change by approximately 20% for the 
temperature primarily considered in this paper. At higher 
temperatures, sound waves can be influenced by nonlinear 

Figure 1.  (a) System size N dependence of MSD M(t), indicated 
by solid lines. (Bold solid line: dependence for N = 64 000. Bottom 
to top: small to large N, for N  =  250, 1000, 4000, 16 000, 64 000 
(bold), and 256 000, at fixed temperature T  =  0.64.) The dotted lines 
indicate the cage-relative MSD MCR(t), where the data for different 
system sizes collapse into one line. (b) N dependence of ‘cage-
irrelevant’ part of MSD ∆CR(t), indicated by solid lines (bold solid 
line: N = 64 000. Bottom to top: small to large N, as in (a), at fixed 
temperature T  =  0.64.) The thin dotted lines indicate the fitting 
by Ct0.67 in the ‘subdiffusive’ regions (c) MSD of cage-irrelevant 
vibration ΓCR(t) after subtraction of subdiffusive asymptote in 
∆CR(t). For all the data in the figure, the temperature is fixed 
(T  =  0.64).
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interactions between atoms. Further consideration is required 
for more precise characterisation of the acoustic waves at 
finite temperatures.

Here, the Mermin–Wagner-type argument should hold well 
for an amorphous solid simulated at a low-enough temper
ature; this is because the plateau heights should become free 
from crossovers with the diffusive region. The difficulties in 
evaluating the plateau heights are limited to the lightly cooled 
case. The N dependence of the thermal fluctuation can be 
clarified further through a thorough analysis of the acoustic 
normal modes (dynamic structure factors) over the full range 
of wave-vectors and frequencies; we plan to address this topic 
in a forthcoming study.

4.2.  Dynamic correlation lengths

From the above discussions, it is plausible that the N depend
ence of the plateau heights is attributed to the Mermin–Wagner 
fluctuation, which induces an infinite correlation length, and 
that the dependence can be removed using a quantity that 
specifically characterises the intermittent particle motions 
involved in structural rearrangement. Thermal fluctua-
tions between 2D and 3D glassy systems are fundamentally 
different.

The purpose of this section is to quantitatively characterise 
the glassy relaxation after elimination of the Mermin–Wagner 
fluctuation. For the dynamics of glasses, the dynamic cor-
relation length is one of the well-accepted quantities that is 
intimately linked to slow relaxation of the system. However, 
the most popular four-point correlation length ξ4 has been 
shown to overestimate the dynamic correlation length for 
large N [22, 45], because the displacement becomes larger 
as a result of the Mermin–Wagner fluctuation. This dynamic 
correlation length is evaluated by evaluating the heterogeneity 
in the overlap function Wi(t) = Θ(a − |∆ri(t)|) representing 

whether particle configurations are overlapping between 
times separated by t, where Θ(x) is Heaviside’s step function. 
Characterising the dynamic correlation length in this manner, 
we cannot avoid to involve the particle that are moving coher-
ently with neighbouring particles.

If the dynamic correlation length is defined instead on 
the basis of a quantity characterising the particle motion 
relative to the neighbours, this problem can be avoided. For 
instance, by taking the change in the nearest neighbour pair as 
a dynamic measure, named as broken-bond correlation func-
tion [22, 45], the associated dynamic correlation length ξB has 
been revealed to be N-independent, successfully qualified as 
a quantity representing to what extent the structural relaxa-
tion becomes heterogeneous, after separating the large-scale 
fluctuations.

In this section, we newly introduce another dynamic cor-
relation length that is free from the effect of the large-scale 
fluctuation. In order to eliminate the effect of large-scale fluc-
tuation in the four-point correlation analysis, we replace the 
displacement ∆ri(t) by the cage-relative displacement, and 
define a ‘cage-relative’ overlap function

Dj(t) = Θ(a − |∆rCR
j (t)|),� (13)

with the threshold value a set to 0.3σ1, a typical value utilised 
for the usual overlap function. This means that, if the distance 
spanned by the particle’s motion relative to its neighbours 
exceeds a, Dj(t) becomes zero; otherwise, it is unity. The 
degree of heterogeneity of the dynamics is then characterised 
as a dynamic susceptibility, defined in a similar manner to the 
standard four-point susceptibility as

χCR(t) = N
[
〈D(t)2〉 − 〈D(t)〉2] , D(t) =

1
N

N∑
j=1

Dj(t).

� (14)
It is assumed that the increase of the dynamic susceptibility 
reflects the degree of correlation between the relaxation 
processes, which also applies to the present susceptibility. 
The structure factor for the cage-relative overlap function is 
defined by

SCR(k, t) =
1
N
〈R(k, t)R(−k, t)〉,� (15)

R(k, t) =
N∑

j=1

Dj(t) exp[−ik · rj(0)].� (16)

Then, ξCR can be estimated by fitting SCR(k, t) to the Ornstein–
Zernike function

SCR(k, tCR) =
SCR0

1 + [kξCR]α
(α = 2),� (17)

at the peak time tCR of χCR(t). At this time tCR, the degree 
of heterogeneity in the structural changes is evaluated in the 
maximised manner.

Figure 3 shows χCR(t) for various N, with the temperature 
fixed at T  =  0.64. It is obviously independent of the system 
size. The standard four-point dynamic susceptibility χ4(t) for 
the 2D glassy liquid, which has been investigated recently 

Figure 2.  Plateau heights of MSD M(tp) and difference between 
M(tp) and cage-relative MSD ∆CR(tp) (open and filled circles, 
respectively) plotted as functions of linear system size L, with the 
particle numbers being N  =  250, 1000, 4000, 16 000, 64 000, and 
256 000 from left to right. Except for N = 256 000 for ∆CR(tp), the 
data are taken from [22]. The dotted line is the Debye asymptote for 
two dimensions estimated using equation (4), for sound velocities 
estimated at T � 0. The corrected residue ΓCR(tp) is also plotted 
(square boxes).
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[22], exhibits periodic oscillation that is N dependent, in a 
sharp contrast to χCR(t), By changing the measure of mobility 
from the simple displacement to that relative to the neigh-
bours, the dynamic susceptibility is altered to characterise 
the dynamic fluctuation, with the effect of long-wavelength 
Mermin–Wagner fluctuation omitted.

In figure 4(a), SCR(k, tCR) is plotted at a fixed temperature 
T  =  0.64. The data for different N collapse into one, meaning 
that the spatial heterogeneity is similar for the different N. In a 
recent paper [22], the corresponding structure factors are also 
evaluated for the four-point and broken-bond correlation func-
tions, where the former is found to be strongly N-dependent, 
and the latter is not.

In figure 4(b), we show the N dependence of the dynamic 
correlation lengths at the same temperature T  =  0.64 for 
the cage-relative overlap functions ξCR, for the broken bond 
functions ξB, and for the simple overlap function (so-called 
four-point length) ξ4. Each of them is evaluated from the 
corresponding structure factors. In line with the result for the 
structure factors, we find that ξCR and ξB exhibit no N depend
ence, whereas ξ4 shows a strong finite size effect. For the 
cage-relative overlap functions, the dynamic correlation ξCR 
is found to be similar to that of broken-bond function ξB.

Finally, we evaluate both ξCR and ξB for different T for a 
fixed system size N = 256 000, as shown in figure 4(c). The 
dynamic correlation lengths ξCR and ξB are found to be sim-
ilar over all T ranges. Moreover, these lengths grow as the 
T decreases to approach the glass transition. This result indi-
cates that both quantities are eligible candidates for dynamic 
correlation lengths characterising the dynamic heterogeneity 
associated with the inherent relaxation motion, after isolating 
the long-wavelength Mermin–Wagner fluctuation.

5.  Conclusion

In this study, we performed molecular dynamics simulation 
analysis of structural relaxation in 2D glassy dynamics. The 
long-wavelength fluctuation can be separated from the struc-
tural relaxation by using the cage-relative MSD, defined to 
characterise particle motion relative to its cage, including par-
ticle escape motion from its cage and the short-ranged motion. 
It was found that, if the time scale is sufficiently short that 
only small changes in the caging particles occur, the long-
wavelength fluctuation can be well quantified. We can eval-
uate the amplitude of the long-wavelength Mermin–Wagner 
fluctuation as a ‘cage-irrelevant part’ (∆CR(t)) by subtracting 
the cage-relative contribution. In 2D glassy systems, however, 
the time-scale of the long-wavelength fluctuation is incre-
mented linearly with the system size. This time scale can be 
comparable to that of the glassy structural changes. If the 
system is excessively large or is only slightly supercooled, the 
cage may break, leading to an increment in the cage-relative 
MSD. The cage-irrelevant part deviates from the squared 
fluctuation amplitude predicted by the Debye asymptote. We 
amended the deviation by introducing a tentative quantity 
ΓCR(t), and retrieved the original squared amplitude of the 
thermal amplitude.

The values of the dynamic correlation lengths were evalu-
ated using the cage-relative MSD, and were similar to that 
estimated using the bond-breakage variables; however, the 
four-point correlation function failed to yield a correct meas-
urement result [22]. This result indicates that the former two 
variables successfully capture the heterogeneous nature of 
the local rearrangement associated with the slow structural 
changes, following elimination of the transient acoustic fluc-
tuation. Thus, cage-relative displacement successfully char-
acterises the dynamic heterogeneity on the α relaxation time 
scale, as well as the bond-breakage variables.

We conclude that the cage-relative displacement well char-
acterises the intermittent particle motion out of the cage, asso-
ciated with the inherent structural relaxation. On a time scale 

Figure 3.  System size N dependence of dynamic susceptibility 
χCR(t) defined with cage-relative spatiotemporal correlation 
function, indicated by solid lines.

Figure 4.  (a) System size N dependence of structure factor 
SCR(k, tCR) for cage-relative overlap function and for a fixed 
temperature T  =  0.64, in two dimensions. (b) Cage-relative, broken-
bond, and four-point dynamic correlation lengths ξCR, ξB, and ξ4 
plotted as functions of N (in terms of total particle number N), for 
fixed temperature T  =  0.64. (c) Cage-relative and broken-bond 
dynamic correlation lengths ξCR and ξB plotted as functions of 
temperature T for fixed system size of N = 256 000.
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before multiple jumps out of the cage take place for each par-
ticle (typically t � tCR), the MSD is partitioned quantitatively 
into long-wavelength fluctuation and the structural relaxation. 
For a quantitative description of the longer-term dynamics, for 
large N and high temperature, the analysis method should be 
improved to capture the inherent structural changes with mul-
tiple jumps out of the cages.

It is still an open question whether the nature of 2D glass 
transition is affected by the long-wavelength fluctuation. The 
relevance of the structural relaxation to the glassy proper-
ties e.g. inherent structures, localisation of the vibration, 
stress relaxation mechanisms, etc can be examined for large 
systems. Analysis of the dynamics presented in this paper, 
together with the broken-bond analysis, will be helpful to 
resolve this issue.
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